

KEYFLEX BT-1033D

>TPEE<

Properties	Value	Unit	Standard
Mechanical properties			
Tensile Stress - 5% Strain		MPa	ISO 527-1/-2
Tensile Stress - 10% Strain		MPa	ISO 527-1/-2
Tensile Stress - 50% Strain		MPa	ISO 527-1/-2
Tensile Stress(Break)	17	MPa	ISO 527-1/-2
Tensile Strain(Break)	800	%	ISO 527-1/-2
Flexual Modulus - 23℃		MPa	ISO 178
Hardness, Durometer 15s	30		ISO 868
Hardness, Durometer Maximum	33		ISO 868
lzod Impact, notched, 80*10*4, -40°C	NB	kJ/m²	ISO 180/1A
Izod Impact, notched, 80*10*4, +23°C	NB	kJ/m²	ISO 180/1A
Charpy Impact, notched, 80*10*4, −40°C	NB	kJ/m²	ISO 179/1eA
Charpy Impact, notched, 80*10*4, +23℃	NB	kJ/m²	ISO 179/1eA
Tear Strength (Method B. unnicked)	110	kN/m	ISO 34
Thermal properties		,	
Melt volume-flow rate	24	cm³/10min	ISO 1133
Temperature/Load-2.16kg	230	°C/kg	ISO 1133
Temp. of deflection under load (0.45 MPa)		°C	ISO 75-1/-2
Melting Temperature(10°C/10min)	180	°C	ISO 11357-1/-3
Glass transition Temperature	.00	10°C/min	ISO 11357-1/-3
Vicat softening temperature (50°C/h 10N)		°C	ISO 306
Vicat softening temperature (50°C/h 50N)		°C	ISO 306
Electrical properties			
Surface resistivity		Ohm	IEC 60093
Volume resistivity		Ohm*m	IEC 60093
Relative permittivity (1MHz)		_	IEC 60250
Relative permittivity (700 MHz)		-	IEC 60250
Dissipation factor (1MHz)		E-4	IEC 60250
Dissipation factor (700 MHz)		E-4	IEC 60250
Electric strength, Short Time, 1mm		kV/mm	IEC 60243-1
Comparative tracking index	600	-	IEC 60112
Other properties			
Density	1090	kg/m³	ISO 1183
Humidity absorption-Equilibrium 50%RH	0.2	%	Sim. to ISO 62
Water absorption - Immersion 24h		%	Sim. to ISO 62
Water absorption - Saturation, immersed		%	Sim. to ISO 62
Mold Shrinkage(normal)		%	ISO 2577, 294-4
Mold Shrinkage(parallel)		%	ISO 2577, 294-4
Test specimen production			
Injection Molding, melt temperature	200	°C	ISO 294
mold temperature - range	20-40	°C	ISO 10724
mold temperature - optimum	30	°C	ISO 10724
Flammability			
Flammability Classification	НВ	-	UL94
Oxygen Index		-	ISO 4589

Although LG Chem believes that the information contained herein (including data and statements) are accurate as of date hereof, LG Chem makes no warranty or guarantee, expressed or implied, (i) that the result described herein will be obtained under end - use conditions, or (ii) as to the effectiveness or safety of any design incorporating LG Chem materials, products, recommendations or advice. Each user bear full responsibility for making its own determination as to the suitability of LG Chem's materials, products, recommendations, or advice for its own particular use. Each user must identify and perform all tests and analyses necessary to assure that its finished parts incorporating LG Chem material or products will be safe and suitable for use under end - use conditions. The data contained herein can be changed without notice as a result of the quality improvement of the products.

Injection Molding Guideline

Conditions		Unit	Value
Preliminary Drying Temperature		$^{\circ}$	100~120
Preliminary Drying Time		hrs	3 ~ 4
Cylinder Temperature	Rear	$^{\circ}$	190 ~ 200
	Middle	$^{\circ}$	190 ~ 200
	Front	$^{\circ}$	200 ~ 210

¹⁾ The above is a table of standard processing conditions and subject to change dependent upon shapes of injection molds.

Drying

If the resin has an excessively high moisture content, this can result in surface defects, i.e.silver streaks, and impaired properties of molded parts. To ensure optimum part performance and prevent surface defects, TEPP resins must be dried prior to processing, and moisture level maintained less than 0.1%. A dehumidifying hopper dryer is highly recommended.

The hopper dryer should be preheated to the suggested drying temperature before the pellets are loaded

Holdind Time/ Pressure

Volume shrinkage takes place when the molded part cools in the mold. Holding pressure serves to offset the volume shrinkage. Holding pressure should be maintained until the gate has "frozen". The required holding pressure time can be determined by checking the weight of the molded part.

■ Please contact EP team for any questions or requirements of detail information about LG EP prooducts.